Patents

Fractional beam forming network antenna

A fractional beam forming network antenna includes a beam forming network and a plurality of antennas. The network includes input ports, output ports, and at least one delay device. The beam forming network couples input ports to the output ports through the at least one delay device. The antennas are vertically disposed relative to each other, and coupled to the output ports. At least two of the antennas include a different elevation tilt and/or azimuth rotation relative to each other. A method of fractional beam forming is provided, which includes coupling, using a beam forming network, input ports to output ports through at least one delay device; disposing a plurality of antennas vertically relative to each other; coupling the antennas to the output ports; and rotating at least two of the antennas in different elevation and/or different azimuth relative to each other.

Isolation of polarizations in multi-polarized scanning phased array antennas

A multi-polarized scanning phased array antenna includes a plurality of elements, a first feed line operatively coupling the plurality of elements, a second feed line operatively coupling the plurality of elements, and a phase delay operatively coupled in at least one of the first feed line and the second feed line. The phase delay is configured to cancel a polarized signal associated with the multi-polarized scanning phased array antenna. A method of increasing isolation between polarizations in a multi-polarized scanning phased array antenna includes coupling a plurality of elements operatively with a first feed line, coupling the plurality of elements operatively with a second feed line, and coupling a phase delay operatively in at least one of the first feed line and the second feed line such that a polarized signal associated with the multi-polarized scanning phased array antenna is cancelled.

Isolation of polarizations in multi-polarized scanning phased array antennas

A multi-polarized phased array antenna includes an element, a first feed line, a second feed line, a first phase shifter, and a second phase shifter. The element is fed with a first polarization signal at first and third angles, and a second polarization signal at second and fourth angles. One of the first polarization signal and second polarization signal is cancelled at a feed point in at least one of a first feed line and second feed line by operation of the first phase shifter, second phase shifter, first angle, second angle, third angle, and fourth angle. The first phase shifter provides a first 180° phase shift between the first and third angles, and the second phase shifter provides a second 180° phase shift between the second and fourth angles. A corresponding method of increasing isolation between polarizations in the multi-polarized phased array antenna is also provided.

Method and apparatus that isolate polarizations in phased array and dish feed antennas

A multi-polarized scanning phased array antenna is provided, which includes a first element, second element, first feed line, second feed line, first 180 degree phase shifter, second 180 degree phase shifter, third 180 degree phase shifter, fourth 180 degree phase shifter, θ1 degree phase shifter, and θ2 degree phase shifter. The first element is fed with a first polarization signal at a first feed point and a third feed point, and a second polarization signal at a second feed point and a fourth feed point. The second element is fed with the first polarization signal at a fifth feed point and a seventh feed point, and the second polarization signal at a sixth feed point and an eighth feed point. The first feed line is coupled to the elements and associated with the first polarization. The second feed line is coupled to the plurality of elements and associated with the second polarization. The first 180 degree phase shifter is coupled in the first feed line between the first and third feed points, and the second 180 degree phase shifter is coupled in the second feed line between the second and fourth feed points. The third 180 degree phase shifter is coupled in the first feed line between the fifth and seventh feed points, and the fourth 180 degree phase shifter is coupled in the second feed line between the sixth and eighth feed points. The θ1 degree phase shifter is coupled in the first feed line between the third and seventh feed points, and the θ2 degree phase shifter is coupled in the second feed line between the second and sixth feed points.

Method and apparatus that isolate polarizations in phased array and dish feed antennas

A multi-polarized scanning phased array antenna is provided, which includes a first element, second element, first feed line, second feed line, first 180 degree phase shifter, second 180 degree phase shifter, third 180 degree phase shifter, fourth 180 degree phase shifter, Θ1 degree phase shifter, and Θ2 degree phase shifter. The first element is fed with a first polarization signal at a first feed point and a third feed point, and a second polarization signal at a second feed point and a fourth feed point. The second element is fed with the first polarization signal at a fifth feed point and a seventh feed point, and the second polarization signal at a sixth feed point and an eighth feed point. The first feed line is coupled to the elements and associated with the first polarization. The second feed line is coupled to the plurality of elements and associated with the second polarization. The first 180 degree phase shifter is coupled in the first feed line between the first and third feed points, and the second 180 degree phase shifter is coupled in the second feed line between the second and fourth feed points. The third 180 degree phase shifter is coupled in the first feed line between the fifth and seventh feed points, and the fourth 180 degree phase shifter is coupled in the second feed line between the sixth and eighth feed points. The Θ1 degree phase shifter is coupled in the first feed line between the third and seventh feed points, and the Θ2 degree phase shifter is coupled in the second feed line between the second and sixth feed points.

Polypod antenna

Embodiments of the present invention include antennas for transmitting and receiving electromagnetic signals. The antennas are configured to transmit a first electromagnetic signal at full power via a first set of radiating elements and to transmit the first electromagnetic signal at an attenuated power via a second set of radiating elements to decrease side lobes associated with the transmission of the first electromagnetic signal. The antennas are configured to receive a second electromagnetic signal having an associated first power level via the second set of radiating elements and to form an aggregated electromagnetic signal having a second power level that is a multiple of the first power level. The antennas are configured to attenuate the aggregated signal to form an attenuated electromagnetic signal having a third power level to facilitate uniform reception of the second electromagnetic signal and tapered transmission.

Random, sequential, or simultaneous multi-beam circular antenna array and beam forming networks with up to 360° coverage

An antenna array system provides simultaneous 360° coverage and includes Butler matrix beam forming networks connected to an antenna array, which includes narrow and/or broadband elements, and multiple transmitters, receivers, or transceivers to allow for 360° transmission and/or reception. The antenna array system can provide multiple beams, such as without limitation 8 or 16 beams, which can vary in beam crossing and/or overlap to provide simultaneous 360° coverage. An antenna array system includes a plurality of antenna elements configured in an array, a first Butler matrix operatively coupled to the plurality of antenna elements, and a second Butler matrix operatively coupled to the first Butler matrix. A method of providing simultaneous 360° coverage includes configuring a plurality of antenna elements in an array, coupling a first Butler matrix operatively to the plurality of antenna elements, and coupling a second Butler matrix operatively to the first Butler matrix.

Tree trunk antenna

Embodiments of the present invention include a patch antenna having a patch element, a ground plane, a feedline, and an electromagnetic shield. The patch element transmitting and/or receives electromagnetic signals. The ground plane is spaced at a specified distance from the patch element. The feedline guides the electromagnetic signal and extends through an opening in the ground plane and to the patch element. The feedline is electrically coupled to the patch element to guide an electromagnetic signal to or from the patch element. The electromagnetic shield extends, at least partially, between the ground plane and the patch element and is electrically coupled to the ground plane. The electromagnetic shield is configured to control an impedance associated with the feedline between the ground plane and the patch element.

Tm mode evanescent waveguide filter

Waveguide filters utilizing the TM modes in an evanescent waveguide are provided. The Q of such filters surpasses any evanescent, dual and triple mode filters in propagating or evanescent waveguides. The waveguide filter in accordance with the present invention features a small size, as well as ease and simplicity in its manufacture when compared with conventional filters. Filters of exceptionally high Q and very low loss, when compared to conventional filters, can be obtained by employing TM modes in an evanescent waveguide. The TM mode evanescent filter has a higher Q than either the evanescent TE mode standard filter of a single mode propagating waveguide (TM or TE) or even the dual or triple mode filters in evanescent or propagating waveguides.

Ultra-broadband antenna array with constant beamwidth throughout operating frequency band

An antenna array includes a plurality of antenna elements configured in a flare such that each of the plurality of antenna elements is uniformly spaced apart from at least one adjacent antenna element. Each of the plurality of antenna elements is coupled in a common area, and each of the plurality of antenna elements extends radially outward from the common area. A method of arranging antenna elements in an antenna array includes configuring a plurality of antenna elements in a flare such that each antenna element is uniformly spaced apart from at least one adjacent antenna element, and each of the plurality of antenna elements extends radially outward from a common area; and coupling each of the plurality of antenna elements in the common area.

Ultra-broadband antenna array with constant beamwidth throughout operating frequency band

An antenna array includes a plurality of antenna elements coupled in a common area and extending radially outward from the common area. At least one of the plurality of antenna elements includes a first antenna portion and a second antenna portion arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion. The gap includes first spacing associated with a first operating frequency and a first operating wavelength, and a second spacing associated with a second operating frequency and a second operating wavelength. A proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band. A method of arranging a plurality of antenna elements in an antenna array is also disclosed.

Ultra-broadband antenna array with constant beamwidth throughout operating frequency band

Wideband small-scale cavity oscillator

A wideband small-scale cavity oscillator includes a single resonating chamber, a negative resistance diode, at least one capacitive waveguide obstacle, and a tap. The single resonating chamber includes a length, width, and height. The length is greater than the width and height. The negative resistance diode is centrally disposed in the single resonating chamber, and the at least one capacitive waveguide obstacle is disposed in the single resonating chamber. The tap is disposed along the length of the single resonating chamber. A method of manufacturing a wideband small-scale cavity oscillator is provided, which includes providing a single resonating chamber including a length, width, and height, disposing a negative resistance diode centrally in the single resonating chamber, disposing at least one capacitive waveguide obstacle in the single resonating chamber, and disposing a tap along the length of the single resonating chamber.